[Swift5.1] 16-泛型
泛型(Generics)
泛型函数
泛型可以将类型参数化,提高代码复用率,减少代码量
- T代表 不确定类型参数
func swapValues<T>(_ a: inout T, _ b: inout T) {
(a, b) = (b, a)
}
var i1 = 10 var i2 = 20
swapValues(&i1, &i2)
var d1 = 10.0 var d2 = 20.0
swapValues(&d1, &d2)
struct Date {
var year = 0, month = 0, day = 0
}
var dd1 = Date(year: 2011, month: 9, day: 10)
var dd2 = Date(year: 2012, month: 10, day: 11)
swapValues(&dd1, &dd2)
泛型函数赋值给变量
func test<T1, T2>(_ t1: T1, _ t2: T2) {}
var fn: (Int, Double) -> () = test
泛型类型
class Stack<E> {
var elements = [E]()
func push(_ element: E) { elements.append(element) }
func pop() -> E { elements.removeLast() }
func top() -> E { elements.last! }
func size() -> Int { elements.count }
}
var stack = Stack<Int>()
stack.push(11)
stack.push(22)
stack.push(33)
print(stack.top()) // 33
print(stack.pop()) // 33
print(stack.pop()) // 22
print(stack.pop()) // 11
print(stack.size()) // 0
class SubStack<E> : Stack<E> {}
注意: 修改结构体数组元素, 需要添加mutating
struct Stack<E> {
var elements = [E]()
mutating func push(_ element: E) { elements.append(element) }
mutating func pop() -> E { elements.removeLast() }
func top() -> E { elements.last! }
func size() -> Int { elements.count }
}
enum Score<T> {
case point(T)
case grade(String)
}
let score0 = Score<Int>.point(100)
let score1 = Score.point(99)
let score2 = Score.point(99.5)
let score3 = Score<Int>.grade("A")
关联类型(Associated Type)
- 关联类型的作用:给协议中用到的类型定义一个占位名称.
- 协议中可以拥有多个关联类型.(协议中使用泛型 只能用关联类型)
protocol Stackable {
associatedtype Element // 关联类型
mutating func push(_ element: Element)
mutating func pop() -> Element
func top() -> Element
func size() -> Int
}
类遵守协议, 给关联类型设定真实类型
class StringStack : Stackable { // 给关联类型设定真实类型, 也可以省略 // typealias Element = String var elements = [String]() func push(_ element: String) { elements.append(element) } func pop() -> String { elements.removeLast() } func top() -> String { elements.last! } func size() -> Int { elements.count } } var ss = StringStack() ss.push("Jack") ss.push("Rose")
类中泛型赋值给协议关联类型
class Stack<E> : Stackable { // typealias Element = E var elements = [E]() func push(_ element: E) { elements.append(element) } func pop() -> E { elements.removeLast() } func top() -> E { elements.last! } func size() -> Int { elements.count } }
类型约束
下面类型约束: 要求泛型必须是Person子类型和遵守Runnable协议
protocol Runnable { }
class Person { }
func swapValues<T : Person & Runnable>(_ a: inout T, _ b: inout T) {
(a, b) = (b, a)
}
- 协议中关联类型也可以类型约束
protocol Stackable {
associatedtype Element: Equatable
}
class Stack<E : Equatable> : Stackable { typealias Element = E }
func equal<S1: Stackable, S2: Stackable>(_ s1: S1, _ s2: S2) -> Bool where S1.Element == S2.Element, S1.Element : Hashable {
return false
}
var stack1 = Stack<Int>()
var stack2 = Stack<String>()
// error: requires the types 'Int' and 'String' be equivalent
equal(stack1, stack2)
协议类型的注意点
protocol Runnable {}
class Person : Runnable {}
class Car : Runnable {}
func get(_ type: Int) -> Runnable {
if type == 0 {
return Person()
}
return Car()
}
var r1 = get(0)
var r2 = get(1)
- 如果协议中有associatedtype, 以下写法会报错.
protocol Runnable {
associatedtype Speed
var speed: Speed { get }
}
class Person : Runnable {
var speed: Double { 0.0 }
}
class Car : Runnable {
var speed: Int { 0 }
}
func get(_ type: Int) -> Runnable {
if type == 0 {
return Person()
}
return Car()
}
var r1 = get(0)
var r2 = get(1)
- 因为编译后, 不确定关联类型是什么类型.
1)泛型解决
解决方案①:使用泛型
func get<T : Runnable>(_ type: Int) -> T {
if type == 0 {
return Person() as! T
}
return Car() as! T
}
var r1: Person = get(0)
var r2: Car = get(1)
2)不透明类型(Opaque Type)
解决方案②:使用some关键字声明一个不透明类型
func get(_ type: Int) -> some Runnable { Car() }
var r1 = get(0)
var r2 = get(1)
some限制只能返回一种类型
some
应用: 想返回遵守某个协议对象, 不希望外部知道对象类型, 外部使用对象时只想暴露协议接口调用, 可以用不透明类型.
- some除了用在返回值类型上,一般还可以用在属性类型上
protocol Runnable { associatedtype Speed }
class Dog : Runnable { typealias Speed = Double }
class Person {
var pet: some Runnable {
return Dog()
}
}
可选项的本质
- 可选项的本质是enum类型
1)可选项在.h中定义
public enum Optional<Wrapped> : ExpressibleByNilLiteral {
case none
case some(Wrapped)
public init(_ some: Wrapped)
}
2)以下可选项赋值等效
var age: Int? = 10
var age0: Optional<Int> = Optional<Int>.some(10)
var age1: Optional = .some(10)
var age2 = Optional.some(10)
var age3 = Optional(10)
age = nil
age3 = .none
var age: Int? = nil
var age0 = Optional<Int>.none
var age1: Optional<Int> = .none
3)可选项混写
var age: Int? = .none
age = 10
age = .some
age = nil
4)可选类型可用于swich
switch age {
case let v?: //如果可选类型age 有值, 会解包赋值给v
print("some", v)
case nil: //如果可选类型age为 nil
print("none")
}
switch age {
case let .some(v):
print("some", v)
case .none:
print("none")
}
等价于
if let v = age {
print("some", v)
} else {
print("none")
}
多重可选项的本质
var age_: Int? = 10
var age: Int?? = age_
age = nil
等价于
var age0 = Optional.some(Optional.some(10))
age0 = .none
var age1: Optional<Optional> = .some(.some(10))
age1 = .none
var age: Int?? = 10
var age0: Optional<Optional> = 10